The Crystal Structure of Manganese Trifluoride, $\mathbf{M n F}_{3}$

By M. A. Hepworth and K. H. Jack
Chemistry Department, King's College, Newcastle-on-Tyne 1, England

(Received 4 December 1956)
MnF_{3} is monoclinic with $a=8.904 \pm 0.003, b=5 \cdot 037 \pm 0.002, c=13.448 \pm 0.005 \AA ; \beta=92.74 \pm 0.04^{\circ}$. The structure is pseudo-rhombohedral and has atoms in the following positions of space group $C 2 / c-C_{2 h}^{6}$:

4 Mn at $(a): 8 \mathrm{Mn}$ at $\left(f_{1}\right)$, with $x_{1}=\frac{1}{8}, y_{1}=\frac{1}{2}, z_{1}=\frac{1}{3} ; 4 \mathrm{~F}$ at (e), with $y_{e}=0.617 ; 8 \mathrm{~F}$ at $\left(f_{2}\right)$, with $x_{2}=0.310, y_{2}=0.714, z_{2}=0.244 ; 8 \mathrm{~F}$ at $\left(f_{3}\right)$, with $x_{3}=0.167, y_{3}=0.117, z_{3}=0.583 ; 8 \mathrm{~F}$ at $\left(f_{4}\right)$, with $x_{4}=0.477, y_{4}=0.214, z_{4}=0.577 ; 8 \mathrm{~F}$ at $\left(f_{5}\right)$, with $x_{5}=0.143, y_{5}=0.214, z_{5}=0.911$.

Since its fluorine-atom packing is mid-way between close-packed hexagonal and an ReO_{3}-type cubic close-packing, MnF_{3} is classified as a VF_{3}-type transition-element trifluoride. The lower symmetry of the structure, in comparison with other trifluorides, results from three different Mn-F bond lengths ($2 \cdot 09,1.91$ and $1.79 \AA$) in each MnF_{6} octahedron. Reasons for this unsymmetrical bonding and for its unique occurrence in MnF_{3} are offered in terms of crystal-field theory.

Introduction

The classification of transition-element trifluorides into three types according to their fluorine-atom arrangements (Hepworth, Jack, Peacock \& Westland, 1957) is correlated with the position of the metal in the Periodic Table. The structure of MnF_{3} was therefore expected to be of the VF_{3}-type. Although this expectation is realized in the present work, it is shown that the distortion of the MnF_{6} octahedra, which are joined by sharing corners, gives rise to a structure of much lower symmetry than that of the other trifluorides in the first long period. The distortion of each MnF_{6} octahedron is due to the occurrence of unequal $\mathrm{Mn}-\mathrm{F}$ bond lengths, for which an explanation is offered.

Experimental

MnF_{3} was prepared by a modification of the method described by Sharpe \& Woolf (1951). Manganous iodate was dissolved in bromine trifluoride and excess of the solvent was evaporated at room temperature under reduced pressure. After heating the solid product in a vacuum at $140^{\circ} \mathrm{C}$., it was transferred to an alumina boat contained in an alumina tube. Fluorine was passed over it at 20 litres/hour for about 1 hr . at $500^{\circ} \mathrm{C}$. to remove traces of BrF_{3}, to complete the fluorination, and to allow crystal growth. The palepink MnF_{3} was transferred to a dry-box and filled into 0.5 mm . diameter X-ray specimen capillaries (found: F $5 \mathrm{I} \cdot 3 \%$; calculated for MnF_{3} : F 50.9%).

X-ray photographs were taken at $18 \pm 2^{\circ} \mathrm{C}$. in a 19 cm . Unicam powder camera with crystal-reflected Fe $K \alpha$ radiation ($\alpha_{1}, 1.93597 ; ~ \alpha_{2}, 1.93991 \AA$) from a lithium fluoride monochromator. The relative in-
tensity of each reflexion was measured on at least two films with a Dobson-type microphotometer constructed from a design by Taylor (1951). Since the powder method relies upon the accurate measurement of a limited number of X-ray intensities, special care was taken with the photometry. Exposure times were such that the density of blackening against intensity was kept within the linear portion of the characteristic curve for the emulsion, and, where necessary, differently exposed films, suitably scaled with respect to each other, were used for the measurements of different reflexions. Density readings were taken along the film at 0.01 cm . intervals and the areas under the plotted photometer curves were measured with a planimeter.

Results

A comparison of the powder photographs of FeF_{3} and MnF_{3} (see Fig. 1) indicated that the structure of the latter was a lower-symmetry distortion of the FeF_{3} rhombohedral structure. By applying various distortions to the FeF_{3} reciprocal lattice, it was concluded that the observed MnF_{3} X-ray reflexions were consistent only with a monoclinic unit cell derived from the orthohexagonal pseudo-cell containing six bimolecular rhombohedral units of a VF_{3}-type structure (see Jack \& Gutmann, 1951; Hepworth et al., 1957). Excellent agreement between observed and calculated $\sin ^{2} \theta$ values was finally obtained by indexing the MnF_{3} reflexions on the basis of a monoclinic cell with dimensions

$$
\begin{gathered}
a=8.904 \pm 0.003, \quad b=5.037 \pm 0.002 \\
c=13.448 \pm 0.005 \AA \\
\beta=92.74 \pm 0.04^{\circ}
\end{gathered}
$$

Fig. 1. Comparison of the powder diffraction data of FeF_{3} and MnF_{3}.

For comparison, the orthohexagonal pseudo-cell of iron trifluoride, containing $12 \mathrm{FeF}_{3}$, has dimensions

$$
a=/ / 3 . b=9 \cdot 004, b=5 \cdot 198, c=13.331 \AA .
$$

The density calculated for $12 \mathrm{MnF}_{3}$ per unit cell (3.701 g.cm. ${ }^{-3}$) may be compared with the value ($3.54 \mathrm{~g} . \mathrm{cm} .^{-3}$) found by Moissan (1900).
The observed absences (see Table 1; hkl with $h+k$ odd, $h 0 l$ with l odd, $0 k 0$ with k odd) require space group $C c-C_{s}^{4}$ or $C 2 / c-C_{2 h}^{6}$; the structure was provisionally assigned to the centrosymmetrical group $C 2 / c$. In addition, however, there are other systematic absences. The only MnF_{3} reflexions observed have $2 h+l=3 n$. A simple matrix transformation shows that this condition requires a pseudo-rhombohedral symmetry of the structure by which any atom at x, y, z is related to two identical atoms at $x+\frac{1}{6}$, $y+\frac{1}{2}, z+\frac{1}{3}$ and $x-\frac{1}{6}, y-\frac{1}{2}, z-\frac{1}{3}$. To satisfy this condition and to preserve correspondence with the metalatom arrangement in FeF_{3}, twelve manganese atoms were placed in the following positions:
4 Mn at $(a):\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+\quad\left(0,0,0 ; 0,0, \frac{1}{2}\right)$.
8 Mn at $\left(f_{1}\right):\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+ \pm\left(x, y, z ; \bar{x}, y, \frac{1}{2}-z\right)$, with $x_{1}=0.167\left(\frac{1}{6}\right), y_{1}=0.500\left(\frac{1}{2}\right), z_{1}=0.333\left(\frac{1}{3}\right)$.
It should be noted that the co-ordinates of the Mn atoms at $\left(f_{1}\right)$ are related to those at (a) by $\pm\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$.

The calculated intensity of a powder reflexion ($h \mathrm{kl}$) obtained with monochromatic X-radiation and without any temperature correction is given by

$$
\begin{equation*}
I_{c}=\text { constant } \times F_{h k l}^{2} \frac{1+\cos ^{2} 2 \alpha \cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta} p A, \tag{1}
\end{equation*}
$$

where α is the angle of reflexion for the monochromator and where the remaining symbols have their usual meanings.
For a structure in which all the atoms vibiate isotropically about their mean lattice positions with equal amplitudes

$$
\begin{equation*}
I_{o} / I_{c}=\exp \left\{-2 B(\sin \theta / \lambda)^{2}\right\} \tag{2}
\end{equation*}
$$

(see Lipson \& Cochran, 1953), and, from equations (1) and (2), if

$$
\begin{equation*}
\log _{10} I_{o}-\log _{10}\left\{F_{h l k}^{2} \frac{1+\cos ^{2} 2 \alpha \cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta} p A\right\}=\log _{10} Q \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\log _{10} Q=\text { constant }-\frac{2 B}{2 \cdot 303 \lambda^{2}} \sin ^{2} \theta \tag{4}
\end{equation*}
$$

Thus, for such a structure, a plot of $\log _{10} Q$ against $\sin ^{2} \theta$ for various reflexions will give a straight line (Bradley \& Lu, 1937), from the slope of which the exponential constant (B) of the temperature factor may be calculated. It was assumed that the temperature factor for MnF_{3} would be similar to that for $\mathrm{FeF}_{3}\left(B=2 \cdot 24 \AA^{2}\right.$ (Hepworth et al., 1957)). Values of $\log _{10} Q^{\prime}$ were first calculated from equation (3) by neglecting any contribution of the fluorine atoms to the structure amplitude, i.e.

$$
\begin{align*}
F^{\prime} & =\Sigma f_{\mathrm{Mn}} \cos 2 \pi(h x+k y+l z) \tag{5}\\
& =12 f_{\mathrm{Mn}} \text { for } l \text { even } ;=0 \text { for } l \text { odd } .
\end{align*}
$$

$\log _{10} Q^{\prime}$ was plotted against $\sin ^{2} \theta$ and the deviation of each point (for reflexions with l even) from a straight line of slope corresponding to $B=2 \cdot 24 \AA^{2}$
then enabled the sign and the approximate magnitude of the fluorine-atom contribution to the structure amplitude to be calculated. Since the contribution of the fluorine atoms is of the same order as that of the manganese atoms for certain reflexions (e.g. 006, 600, $60 \overline{6}$, and $0,0,12$), the scatter of points representing $\log _{10} Q^{\prime}$ was wide. However, by taking into account the maximum possible contribution of the fluorine atoms ($\pm 36 f_{\mathrm{F}}$), by adjusting the value of the temperature factor, and by assuming that the fluorineatom arrangement was not widely different from that of FeF_{3}, it was possible to obtain parameters for the fluorine atoms. The procedure was similar to that used in locating the positions of the interstitial atoms in austenite (Petch, 1942; Jack, 1951).

Finally, after trial-and-error refinement, excellent agreement between the observed and calculated X-ray

Table 1. Calculated and observed X-ray data for MnF_{3} ($\mathrm{Fe} K \alpha$ radiation)
$a=8.904 \pm 0.003, \quad b=\begin{gathered}5.037 \pm 0.002, \\ \beta=92.74 \pm 0.04^{\circ}\end{gathered} c=13.448 \pm 0.005 \AA ;$

hkl	Calc.	Obs.	Calc.	Obs.
111	0.0548	-	< 1	
$11 \overline{2}$	0.0681	0.0678	1708	1792
202	0.0712	0.0713	807	800
$20 \overline{4}$	$0 \cdot 1246$	$0 \cdot 1246$	218	215
114	$0 \cdot 1350$	$0 \cdot 1350$	260	246
310	$0 \cdot 1437$	$0 \cdot 1434$	114	108
020	0.1479	$0 \cdot 1481$	15	14
115	$0 \cdot 1750$	$0 \cdot 1750$	8	9
$31 \overline{3}$	$0 \cdot 1837$	$0 \cdot 1837$	383	
006	$0 \cdot 1872$	$0 \cdot 1881$	$12\} 395$	406
023	0.1947	$0 \cdot 1945$	193	
313	0.1973)	0.1974	296496	543
221	$0 \cdot 1990$	0.1974	7	
$40 \overline{2}$	$0 \cdot 2044$	$0 \cdot 2046$	45	47
222	0.2191	0.2191	32	31
224	0.2725	$0 \cdot 2725$	432	443
404	0.2848	0.2850	223	231
117	$0 \cdot 3089$	$0 \cdot 309$	5	vow
316	0.3174	0.3176	337	337
225	$0 \cdot 3328$	-	1	-
511	0.3348)	0.3351	$33) 432$	411
$02 \overline{6}$	0.3351 \}	0.3351	399 (${ }^{3}$	411
316	0.3444	0.3445	287) 315	322
421	0.3457 ,	$0 \cdot 3445$	27 \{ 315	322
131	0.3506	$0 \cdot 3519$	39 160	157
$42 \overline{2}$	0.3523 \}	$0 \cdot 3519$	121 ¢ 160	157
512	0.3617 \}	0.3624	161 283	294
$13 \overline{2}$	0.3639 \}	$0 \cdot 3624$	122 \} 283	294
$11 \overline{8}$	$0 \cdot 3756$	0.3760	80	79
208	$0 \cdot 3922$	$0 \cdot 3921$	27	27
514	$0 \cdot 4016$	$0 \cdot 4021$	83	86
600	$0 \cdot 4268$	$0 \cdot 4268$	183	
134	$0 \cdot 4308$)	0.4314	125	
424	$0 \cdot 4327$ \}	$0 \cdot 4314$	79 669	680
330	0.4395			
$22 \overline{7}$	0.4396)	$0 \cdot 4396$	4	
425	$0 \cdot 4525$	$0 \cdot 4526$	12	10
135	$0 \cdot 4708$	0.4710	37	34
$33 \overline{3}$	0.4795	$0 \cdot 4821$	6) 27	26
515	0.4822 \}	$0 \cdot 4821$	$21\} 27$	26
333	0.4931		${ }^{3}$) 65	65
$40 \overline{8}$	$0 \cdot 4984$	$0 \cdot 4992$	62 \} 65	65

Table 1 (cont.)
$\sin ^{2} \theta$
$h k l$
228
2,319
2,0110
$2,0,117$
517 029 620
$1,1,10$
319
$60 \overline{6}$ 040
137 $13 \overline{7}$
$63 \overline{3}$
3 336
427
$71 \overline{2}$
7
$\sin ^{2}$
I

Calc.	Obs.	Calc.	Obs.
0.5401	0.5398	209 286	
$0 \cdot 5446$	0.5448	77 \} 286	271
0.5526	$0 \cdot 5526$	34	32
$0 \cdot 5619$	0.5620	11	9
$0 \cdot 5691$	$0 \cdot 5694$	36	35
0.5747 \}	0.5763	$25) 139$	148
0.5763 \}	0.5763	$114{ }^{139}$	148
$0 \cdot 5852$	$0 \cdot 5854$	45	
0.5870	-	< 1 ${ }^{86}$	83
$0 \cdot 5916$	0.5917	41	
$0 \cdot 6047$	0.6049	10	
$0 \cdot 6080$	0.6074	26 58	61
0.6132 \}	0.6130	6	
$0 \cdot 6133$ \}	0.6130	16	
$0 \cdot 6282$		117	
$0 \cdot 6284$	0.6294	27 192	201
$0 \cdot 6306$		48	
$0 \cdot 6350$		20)	
$0 \cdot 6384$	$0 \cdot 6397$	17	
$0 \cdot 6402$		9	
$0 \cdot 6410$	-	2	
0.6427)	0.6465	16484	495
$0 \cdot 6463$ \}	0.6465	86 - 484	495
$0 \cdot 6575$	$0 \cdot 6578$	94	
$0 \cdot 6628$	$0 \cdot 6628$	184	
0.6697)	0.6715	4	
$0 \cdot 6714$ \}	0.6715	52	
$0 \cdot 6962$		47	
$0 \cdot 6974$	$0 \cdot 6968$	37 109	110
$0 \cdot 7003$		25	
$0 \cdot 7160$	-	6	
0.7216)	0.7225	15 43	41
0.7221 \}	0.7225	22	
0.7349	0.7352	$128) 131$	130
0.7396	-	$3\}^{131}$	130
0.7488	$0 \cdot 7488$	123	125
0.7765		19	
0.7780	0.7778	45 112	117
0.7788		48	
0.7889	0.7885	92	$m 8$
0.7894	-	< 1	-
0.7912	0.7912	53	m
0.7960	0.7961	108	$m s$
0.8159)	0.8166	78 7 89	$m s$
0.8176 \}	$0 \cdot 8166$	11 \} 89	ms
0.8404	-	4	-
$0 \cdot 8410$	-	<1	-
0.8577	$0 \cdot 8571$	39	$m w$
$0 \cdot 8655$	0.865	19	$v w$
$0 \cdot 8721$	$0 \cdot 8725$	40	$m w$
0.8764	$0 \cdot 8765$	34	$m w$
0.8810	-	1	-
$0 \cdot 8875$	$0 \cdot 8877$	102	$m s$
$0 \cdot 8962$	-	1	
$0 \cdot 8967$	-	12	-
$0 \cdot 9055$	-	<1	-
0.9087)	0.9097	33) 73	m
0.9095 \}	$0 \cdot 9097$	40) 3	m
0.9195	$0 \cdot 9193$	28	w
0.9240	0.9232	25	w
$0 \cdot 9242$	-	<1	-
0.9337	-	6	-
0.9374	-	8	-
$0 \cdot 9391$	-	8	-
$0 \cdot 9422$	-	7	-
0.9554)	0.9561	40) 54	
$0.9555\}$	0.9561	14 \} 54	w
0.9655	0.9668	54 369	
$0.9655\}$	$0 \cdot 9668$	$315\} 369$	8

Relative intensities
data (see Table 1) was obtained by taking $B=2.43 \AA^{2}$ and by placing 12 Mn and 36 F atoms in the following positions of space group $C 2 / \mathrm{c}$:
4 Mn at $(a):\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+\quad\left(0,0,0 ; 0,0, \frac{1}{2}\right)$.
8 Mn at $\left(f_{1}\right):\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+ \pm\left(x, y, z ; \bar{x}, y, \frac{1}{2}-z\right)$,
with $x_{1}=0.167\left(\frac{1}{6}\right), y_{1}=0.500\left(\frac{1}{2}\right), z_{1}=0.333\left(\frac{1}{3}\right)$. 4 F at $(e):\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)+ \pm\left(0, y, \frac{1}{4}\right)$, with $y_{e}=0.617$.
8 F at $\left(f_{2}\right)$, with $x_{2}=0.310, y_{2}=0.714, z_{2}=0.244$.
8 F at $\left(f_{3}\right)$, with $x_{3}=0.167, y_{3}=0.117, z_{3}=0.583$.
8 F at $\left(f_{4}\right)$, with $x_{4}=0.477, y_{4}=0.214, z_{4}=0.577$.
8 F at $\left(f_{5}\right)$, with $x_{5}=0.143, y_{5}=0.214, z_{5}=0.911$.
Just as the co-ordinates of the Mn atoms at $\left(f_{1}\right)$ are related to those at (a) by $\pm\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$, the F atoms at $\left(f_{3}\right)$ are similarly related to those at (e) and the positions $\left(f_{4}\right)$ and $\left(f_{5}\right)$ are likewise related to $\left(f_{2}\right)$.

The estimated error of these atomic co-ordinates is probably not greater than ± 0.003. The scattering factors used are those given for the unionized atoms (International Tables, 1935) after correction in the case of manganese for dispersion by the K electrons (see James, 1948; for Fe $K \alpha$ radiation $\Delta f_{\mathrm{Mn}}=-4.04$). Less satisfactory agreement between the observed and calculated X-ray data was obtained by using scat-tering-factor values for the fluoride anion; those for the trivalent manganese cation are not available. No evidence was obtained to suggest that the temperature factors of the different atoms in MnF_{3} are unequal or that they are anisotropic.

Discussion of the MnF_{3} structure

Except for the monoclinic distortion of the unit cell, the metal atoms in MnF_{3} are in exactly corresponding positions to those of the FeF_{3} structure. For a similar correspondence between the F-atom arrangements, the values required for the co-ordinates in MnF_{3} would be $y_{e}=0.586 ; x_{2}=0.293, y_{2}=0.707, z_{2}=0.250$, with the positions $\left(f_{3}\right),\left(f_{4}\right)$ and $\left(f_{5}\right)$ dependent as before on (e) and (f_{2}). Since the observed co-ordinates are

Fig. 2. Dimensions of the MnF_{6} octahedron. $l=2.1 \AA, m=1.9 \AA, s=1.8 \AA$.

Fig. 3. Spatial relationships between adjacent MnF_{6} octahedra.
appreciably different from these values, it is clear that the fluorine-atom arrangement in MnF_{3} is not merely a small monoclinic distortion of the arrangement in FeF_{3}. The fluorine packing in both trifluorides is approximately mid-way between close-packed hexagonal and a ReO_{3}-type cubic close packing, so that MnF_{3} must be classed like FeF_{3} as a VF_{3}-type transitionelement trifluoride. The MnF_{3} structure is, however, much less regular than that of any trifluoride so far reported. It consists of MnF_{6} octahedra joined by sharing all corners. The dimensions of each octahedron are given in Fig. 2, and Fig. 3 shows the relative orientations of neighbouring octahedra. Each Mn is co-ordinated by $6 \mathrm{~F}: 2$ at $2 \cdot 09,2$ at $1 \cdot 91$ and 2 at $1.79 \AA$. This wide variation in the Mn-F distances within the same octahedral group is unusual. In MnF_{2}, which has the rutile-type structure (Griffel \& Stout, 1950), each Mn has 2 F at $2 \cdot 14$ and 4 F at $2 \cdot 11 \AA$.

Like VF_{3}, the MnF_{3} structure consists of alternate and regularly spaced planes of metal atoms and planes of fluorine atoms. A projection of the unit cell on (001) along the direction [001] (see Fig. 4) shows twelve such successive planes. Each fluorine-atom plane 1, 3,5 etc. is puckered and has one-third of its atoms $0.08 \AA$ above (t) and one-third $0.08 \AA$ below (-) the remaining third. The principal interatomic distances F-F (p and q), $M-\mathrm{F}(r)$ and $M-M(s)$, and the $M-\mathrm{F}-M$ bond angles (φ), are compared with the corresponding distances and angles of $\mathrm{VF}_{3}, \mathrm{FeF}_{3}$ and CoF_{3} in Table 2. The mean values for MnF_{3} agree quite closely with those of the related trifluorides, and the individual abnormalities appear to be due to the marked distortion of the MnF_{6} octahedron which results from the

Table 2. Structural data for MnF_{3} compared with those for $\mathrm{VF}_{3}, \mathrm{FeF}_{3}$ and CoF_{3} (Co-ordination numbers are given in parentheses.)
Interatomic distances (\AA)
$\overbrace{p} \overbrace{p}^{\mathrm{F}-\mathrm{F}}$
VF_{3}
(4) 2.75
(4) $2 \cdot 74$
) 1.94
(6) $3 \cdot 73$
147
MnF_{3}
(i)
(2) 2.64
(2) $2 \cdot 60$
(2) $2 \cdot 81$
(2) 2.85
$\left.\begin{array}{l|}\text { (2) } 2.64 \\ (2) 2.74\end{array}\right\}$
(2) 2.60
(2) $2 \cdot 74$
(2) $2 \cdot 76$
(iii)
(2) 2.74
(2) 2.81
(2) 2.76
(2) 2.85
$2 \cdot 74$
(i)
(2) 2.09
(4) 2.72
CoF_{3}
(4) $2 \cdot 66$
(4) $2 \cdot 69$
(6) 1.92
(6) 3.73
(6) 1.89
(6) 3.65
153
three different Mn-F bond lengths. The octahedra are joined by sharing corners in such a way that three sets of linkages

$$
\cdots-\mathbf{F}-\mathrm{Mn}-\mathrm{F}-\mathrm{Mn}-\mathrm{F}-\mathrm{Mn}-\cdots
$$

Fig. 4. Projection along [001] on (001) of the MnF_{3} unit cell.
run continuously throughout the structure. Since the structure may be regarded as a considerably distorted pseudo-cubic ReO_{3} type (Hepworth et al., 1957), the three sets of linkages run in general directions which are approximately at right-angles to one another. The $\mathbf{M n}-\mathbf{F}$ distances of the $\mathbf{F}-\mathbf{M n}-\mathbf{F}$ links in two of these directions are alternately long and short (2.09 and $1.79 \AA$ respectively), and in the third direction the $\mathrm{Mn}-\mathrm{F}$ distances are all equal (see Fig. 5).

Fig. 5.
Mn-F bond distances along three pseudo-cubic directions.

$$
l=2 \cdot 1 \AA, m=1.9 \AA, s=1.8 \AA ; \varphi_{1}=144^{\circ}, \varphi_{2}=148^{\circ}
$$

Simple compounds of trivalent manganese are rare, and since no structural data other than those given in the present work are available, values of the $\mathrm{Mn}-\mathrm{F}$ distance calculated for ionic and for covalent bonding are unreliable. The ionic and covalent radii for fluorine are respectively 1.36 and $0.67 \AA$, and those for manganese are assessed (see Pauling, 1940; and Sidgwick 1950) as 0.64 and $1 \cdot 22 \AA$. Thus, the $\mathrm{Mn}-\mathrm{F}$ distance is
probably about $2.00 \AA$ for ionic bonding and about $1.89 \AA$ for covalent bonding. The mean of the two shorter observed distances in MnF_{3} (1.91 and $1.79 \AA$) is slightly less than the estimated covalent value, but the remaining $\mathrm{Mn}-\mathrm{F}$ bond ($2.09 \AA$) is even longer than the calculated ionic value.

Interatomic bonding in $\mathbf{M n F}_{3}$

The crystal-field (or ligand-field) theory (see Orgel, 1952) interprets the stereochemistry of complex compounds of the transition metals by considering the effect of the electric field due to ligand lone-pairs of electrons upon the arrangements of the d-orbitals of the co-ordinated atom. In the field-free atom (e.g. manganese) the five $3 d$ orbitals are degenerate, but on bringing up six octahedrally co-ordinated charges along the x, y and z axes a stage is reached when the cubic field is strong enough to split the d-levels into two groups-a set of three degenerate d_{ε} orbitals and a set of two d_{γ} orbitals of higher energy. The d_{ε} orbitals are of lower energy because their lobes of electron density point in between the x, y and z axes, i.e. away from the incoming six ligand charges. The d_{γ} orbitals, however, point along the bond directions, and if they are occupied they will interact repulsively with the incoming charges. As an example of its application, Harris, Nyholm \& Stephenson (1956) have recently used the theory to account for the observed bond lengths in Pd (diarsine) $\mathrm{I}_{2} \mathrm{I}_{2}$. The structure of the latter consists of discrete molecules in which the central metal atom is surrounded by 4 As atoms in a square plane at $2.38 \AA$. The 2 I atoms complete a distorted octahedron with elongated Pd-I bonds ($3.52 \AA$). The normal Pd-I bond distance in square complexes is only $2.65 \AA$. Prof. R. S. Nyholm (private communication) has suggested that the abnormally long bonds in the MnF_{6} octahedra of the MnF_{3} structure might be explained in a similar way.

The magnetic moment of MnF_{3} is 4.9 B.M. (Nyholm \& Sharpe, 1952), from which it is inferred that there are four unpaired electrons in the $3 d$ shell of the Mn (III) atom. Three of these occupy the d_{ε} orbitals and the remaining electron is most probably in a $3 d_{2^{2}}$ orbital. The empty $3 d_{\left(x^{2}-y^{2}\right)}$ orbital points in the directions of four fluorine ions and, together with the 4 s and two $4 p$ orbitals, forms four hybrid $d s p^{2}$ bonds directed towards the corners of a square. The three singly-occupied d_{ε} orbitals offer no repulsion since they point between the fluorine atoms. The singly-occupied $3 d_{z^{2}}$ orbital points along the axis of the remaining two Mn-F bonds and must exert a repulsion. These two F atoms are held either by ionic bonds or by linear hybrid $4 p 4 d$ bonds-an interpretation which is in accordance with the abnormally long bond length of $2.09 \AA$. The four hybrid $3 d_{\left(x^{2}-y^{2}\right)} 4 s 4 p^{2}$ orbitals are not all exactly equivalent since the bonds in the plane (1.91 and $1.79 \AA$) are not of equal lengths. Neighbouring MnF_{6} octahedra are oriented in such a way that a
fluorine atom common to both is either equidistant at $1.91 \AA$ from each metal atom or is abnormally distant ($2.09 \AA$) from one manganese atom and at the same time abnormally close ($1.79 \AA$) to the other manganese atom. In this way, the close-packing of distorted octahedra with shared corners is maintained. In terms of classical valency theory, the three different $\mathrm{Mn}-\mathrm{F}$ bonds might be described as having different covalent and ionic contributions, the ionic contribution increasing with increasing bond length.

Ligand-field theory also offers an explanation for the unique difference between manganese and its neighbouring metals in their trifluoride structures. Chromium, manganese, iron and cobalt each in the trivalent state, have electronic configurations represented by:

It is only for manganese, where the electron occupation of the d_{γ} orbitals is unsymmetric, that the d_{γ} interaction with the ligands might be expected to be anisotropic.

We are greatly indebted to Prof. R. S. Nyholm of University College, London, for most valuable suggestions and for discussion. We also thank Prof. P. L. Robinson of King's College, Newcastle upon Tyne, for his continued interest and encouragement. The work was carried out during the tenure of a British Titan Products Fellowship (M. A. H.), and we acknowledge a grant (to K.H.J.) by the Royal Society for X-ray equipment.

References

Bradley, A. J. \& Lu, S. S. (1937). Z. Kristallogr. 96, 20. Griffel, M. \& Stout, J. W. (1950). J. Amer. Chem. Soc. 72, 4351.
Harris, C. M., Nyholm, R.S. \& Stephenson, N. C. (1956). Nature, Lond. 177, 1127.

Hepworth, M. A., Jack, K. H., Peacock, R. D. \& Westland, G. J. (1957). Acta Cryst. 10, 63.
International Tables for the Determination of Crystal Structures (1935), vol. 2. Berlin: Borntraeger.
Jack, K. H. (1951). Proc. Roy. Soc. A, 208, 200.
Jack, K. H. \& Gutmann, V. (1951). Acta Cryst. 4, 246.

James, R. W. (1948). The Crystalline State, vol. 2. London: Bell.
Lipson, H. \& Cochran, W. (1953). The Crystalline State, vol. 3. London: Bell.
Moissan, H. (1900). C. R. Acad. Sci., Paris, 130, 662.
Nyholm, R.S. \& Sharpe, A. G. (1952). J.Chem. Soc. p. 3583.

Orgel, L. E. (1952). J. Chem. Soc. p. 4756.

Pauling, L. (1940). The Nature of the Chemical Bond, 2nd ed. London: Oxford University Press.
Petch, N. J. (1942). J. Iron Steel Inst. 145, 111.
Sharpe, A. G. \& Woolf, A. A. (1951). J.Chem. Soc. p. 798.

Sidgwick, N. V. (1950). The Chemical Elements and their Compounds, vols. 1 and 2. Oxford: Clarendon Press. Taylor, A. (1951). J. Sci. Instrum. 28, 200.

A Simple Adapter for Rotation Cameras to Improve the Accuracy of Measurement of Identity Periods

By A. McL. Mathieson
Chemical Physics Section, Division of Industrial Chemistry, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia

(Received 4 October 1956)
A simple adapter is described which makes it possible to measure identity periods from rotatingcrystal photographs with an accuracy of the order of 0.1%.

Introduction

Identity periods in crystals are related to the separation of layer lines in rotating-crystal photographs by the expression

$$
\begin{equation*}
a=n \lambda / \sin \nu_{n} \tag{1}
\end{equation*}
$$

where a is the identity period and ν_{n} the semi-opening cone angle of the nth layer (Fig. 1). Differentiation of (I) leads to

$$
\begin{equation*}
\Delta a / a=-\cot v . \Delta v \tag{2}
\end{equation*}
$$

which relates the error in a to the error in the measurement of ν.

For the conventional film mounting in a rotation camera (Fig. 1 (position A) and Fig. 2(a)) two factors limit the accuracy. First, \boldsymbol{v} is limited to angles $<55^{\circ}$, so that $\cot v$ is always >0.7. Secondly, in the terminology of Buerger (1942, p. 95), $\Delta \nu=\cos ^{2} \nu / r . \Delta y$, where r is the radius of the camera and Δy is the error in the measurement of the separation of the layer lines. At the upper limit of $\nu, \cos ^{2} \nu=0 \cdot 3$, but, owing to beam divergence and oblique incidence of the diffracted beams on the double-coated film, Δy increases about 4-5 times (a value determined from Fig. 2(a), but representative of typical rotation photographs) and hence Δv for upper layer lines is slightly greater than for lower layer lines. The expected increase in accuracy for upper layer lines due to the $\cot \nu$ term in (2) is therefore partly reduced by the increase in $\Delta \nu$.

Principle of the adapter

A film mounting which would permit normal incidence of reflexions in the range $0^{\circ}<\nu<90^{\circ}$, would over-
come these disadvantages (Fig. 1 (position B)) since the size of reflexions would not vary with ν for a small crystal of the usual dimensions. Δv would remain constant and full advantage could be taken of the

Fig. 1. Rotating-crystal technique with film in the standard position A and in the modified position B permitting normal incidence of reflexions. The direct X-ray beam is normal to the plane of the paper and the diagram illustrates the section at $2 \theta=90^{\circ}$.

